N-Demethylation of Methylene Blue by Lignin Peroxidase from *Phanerochaete chrysosporium*

Stoichiometric Relation for H₂O₂ Consumption

VIRIDIANA S. FERREIRA, DENISE B. MAGALHÃES, SÉRGIO H. KLING, JOSÉ G. DA SILVA JR., AND ELBA P. S. BON*, 1

¹Instituto de Química, Universidade Federal do Rio de Janeiro, CT, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21949-900, Brazil, E-mail: elba1996@iq.ufrj.br; and ²Instituto de Química, Universidade do Estado Rio de Janeiro, São Francisco Xavier 524, Rio de Janeiro, RJ, Brazil

Abstract

Phanerochaete chrysosporium lignin peroxidase (LiP) can degrade synthetic dyes such as heterocyclic, azo, and triphenylmethane on its activation by H₂O₂. Analysis of the reaction products indicated that *N*-demethylation reactions are involved in the degradation of crystal violet and methylene blue (MB). We studied LiP oxidation of methylene blue and azure B (AB) in reaction mixtures containing different dye:H₂O₂ stoichiometric relations aiming at the selective formation of *N*-demethylated derivatives. High yields, about 70%, of the mono- and didemethylated derivatives, azure B and azure A, were obtained with the use of 1:1 and 1:2 MB:H₂O₂, respectively. Using azure B as substrate in reaction mixtures containing 1:1 AB:H₂O₂, a yield of 70% was also observed in azure A. Reaction mixtures containing 1:3 MB:H₂O₂ and 1:2 AB:H₂O₂, originated several oxidation products in similar proportions. These results indicated that the process of enzymatic degradation of methylene blue and azure B initiates via N(CH₂), oxidation. According to the yields that were obtained for azure B and azure A, this enzymatic route can be used for the synthesis of these dyes since these data compare favorably to the chemical route that has a yield of 35%. The use of a dye:H₂O₂ relation of 1:10 resulted in a decoloration level of about 85%, showing the usefulness of this procedure for wastewater treatment. The reaction products were followed by spectrophotometric analysis within the wavelength of 500–700 nm. The product identifications were performed using a reverse-phase

^{*}Author to whom all correspondence and reprint requests should be addressed.

256 Ferreira et al.

high-performance liquid chromatography (HPLC) C-18 column and thin-layer chromatography.

Index Entries: *Phanerochaete chrysosporium* lignin peroxidase; stoichiometric dye: H_2O_2 relation; enzymatic *N*-demethylation reactions; methylene blue; azure B.

Introduction

The ligninolytic enzymatic system of *Phanerochaete chrysosporium* is able to oxidize various recalcitrant xenobiotics released into the environment as a result of human activity (1–5). Among these compounds are many synthetic dyes such as heterocyclic, azo, and triphenylmethane that are widely used by the textile, photography, and dyestuffs industries. These compounds are resistant to biological wastewater treatment and therefore cause high chemical pollution when discharged into the soil and water (6–12). The degradation of synthetic dye, e.g., orange II, tropacolin O, congo red, azure B (AB), bromophenol blue, methylene blue (MB), methyl green, methyl orange, remazol brilliant blue, toluidine blue, amaranth, and orange G, has been studied using ligninolytic cultures of *P. chrysosporium* (6,8), the culture supernatant (10,12), or purified lignin peroxidase (LiP) isoforms (7). These data collectively point to the ability of this biocatalyst to oxidize these xenobiotics. This feature conveys to LiP a potential use as an ecofunctional enzyme by playing a role in environmental biocatalysis. Different substrate: H₂O₂ relations have been used on dye enzymatic oxidative reaction mixtures, such that both stoichiometric (13) and nonstoichiometric ratios have been reported (7,10). In most cases, product formation has been analyzed qualitatively rather than on the yields of the reaction products in relation to the substrate: H₂O₂ ratio. Thus, although it is well known that crystal violet and methylene blue, which are hexa and tetramethylated, respectively, are degraded by LiP and that fewer methylated derivatives are formed (10–12), the effects of specific reaction conditions such as substrate concentrations on the nature and yields of the products have not been evaluated. Therefore, considering that LiP is both activated by H₂O₂ and inactivated by its excess (14), it would be useful to envisage the qualitative and quantitative pattern of product formation in reaction mixtures showing specific dye:H₂O₂ ratios.

This work studied the formation of demethylated methylene blue and azure B derivatives in reaction mixtures containing 1:1, 1:2, and 1:3 MB: H_2O_2 and 1:1 and 1:2 AB: H_2O_2 . In addition, product formation in reaction mixtures containing MB: H_2O_2 ratios of 1:0.1, 1:0.25, 1:0.5, and 1:0.75 were analyzed to evaluate the pattern of product formation under H_2O_2 -limiting concentrations.

Table 1 shows the chemical structures of methylene blue that present two $N(CH_3)_2$ groups and its demethylated derivatives—azure B, azure A, azure C—and thionine that have three, two, one, and zero N-methyl groups, respectively (15).

Table 1 Chemical Structures of Methylene Blue and Its N-Demethylated Derivatives^a

COMPOUNDS	λ _{ΜΑΧ} (15)	λ _{ΜΑΧ} (19)	MB: H ₂ O ₂ In reaction mixtures	λ _{MAX} Our work
(CH ₃) ₂ N St N(CH ₃) ₂ Cf METHYLENE BLUE	668	667	1:0	656-666
CH ₃ NH CI' S N'(CH ₃) ₂ AZURE B	648-655	652	1:1	642-646
CIT AZURE A (CH ₃)HN S N ⁺ (CH ₃) ₂ NH(CH ₃) CIT AZURE A (isomeric form)	620-634	638	1:2	626-630
H ₂ N CT CT AZURE C	611-617	611	1:3	Not clear
H ₂ N S' NH ₂ CH ₃ CO ₂ THIONINE	596-601	602		

 $^{\textit{n}}$ The reported values of λ_{max} (nm) for these compounds and the λ_{max} obtained in this work for the reaction mixtures where they were produced are also compared.

Materials and Methods

Lignin Peroxidase

Enzyme production by *P. chrysosporium* has previously been described (16). The crude enzyme preparation was dialyzed for the removal of residual veratryl alcohol to avoid substrate competition.

258 Ferreira et al.

Oxidation of Methylene Blue and Azure B by LiP

The reaction mixtures contained 2.2 mL of LiP presenting 140 U/L in terms of veratryl alcohol activity (17), 100 μ L of 1 mM MB, 600 μ L of 0.25 M sodium tartarate buffer (pH 4.0), and 100 μ L of 1, 2, or 3 mM H_2O_2 . The final concentration of MB in the reaction mixtures was 33 μ M, and the concentrations of H_2O_2 were 33, 66, and 99 μ M (12). Methylene blue was previously purified using the same condition described for HPLC analysis of the reaction products. The same overall reaction conditions were used for azure B oxidation except that the initial concentration of the dye was 1.25 mM and that of H_2O_2 was 1.25 or 2.50 mM. Thus, the azure B final concentration was 42 μ M and that of H_2O_2 was 42 or 84 μ M. Reactions were started by adding H_2O_2 at the relevant concentration. In control experiments performed in the absence of LiP or H_2O_2 , no dye degradation was observed. Reactions were followed in the visible range, 500–700 nm, until completion using a Hewlett Packard spectrophotometer Diode Array 8452-A (Hewlett Packard, Corvallis, OR).

HPLC Analysis

The products were identified using a reverse-phase C-18 column (7.8 × 300 mm, µbondpack, Waters/Millipore Corporation, Millford, MA). Compounds were eluted with a gradient consisting of 0.1% trifluoroacetic acid (A) and 80% acetonitrile with 0.07% trifluoroacetic acid (B). The gradient was developed starting with 70:30 (A:B), which varied linearly to 20:80 (A:B). A solvent flow rate of 2.0 mL/min was used, and the product elution was monitored at 600 nm (10,18). The reaction product yields were calculated considering the response factor for each derivative at 600 nm.

Thin-Layer Chromatography

Thin-layer chromatography (TLC) was performed using silica gel plates 60G F-254 (E-Merck-AG, Darmstadt, Germany), and a solvent system of 99:1 ethyl alcohol: HCl(v/v) for 10 min(11). In both chromatographic procedures, methylene blue, azure B, azure A, azure C, and thionine (Sigma, St. Louis, MO) were used as standards.

Results and Discussion

Figure 1 shows the spectra of absorbance of the products obtained by the enzymatic oxidation of methylene blue in reaction mixtures containing 1:1, 1:2, and 1:3 MB: H_2O_2 . For comparison, the absorbance spectrum of a reaction mixture in which H_2O_2 was substituted by distilled water is included (1:0 MB: H_2O_2). To each stepwise increase in H_2O_2 concentration corresponded a hypsochromic shift and a decrease in absorbance (Table 1). These results suggested the occurrence of consecutive *N*-demethylations in response to the increase in H_2O_2 concentration, because according to the literature the loss of one *N*-methyl group leads to an approximate shift of 10–20 nm (19). Figures 2–5 present the HPLC profiles of the control experi-

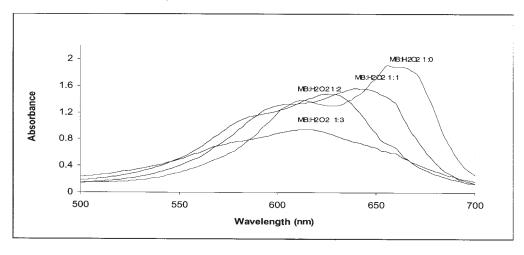


Fig. 1. Spectrophotometric analysis of the reaction products obtained by LiP oxidations, in reaction mixtures containing 1:0 MB: H_2O_2 , 1:1 MB: H_2O_2 , 1:2 MB: H_2O_2 , and 1:3 MB: H_2O_2 .

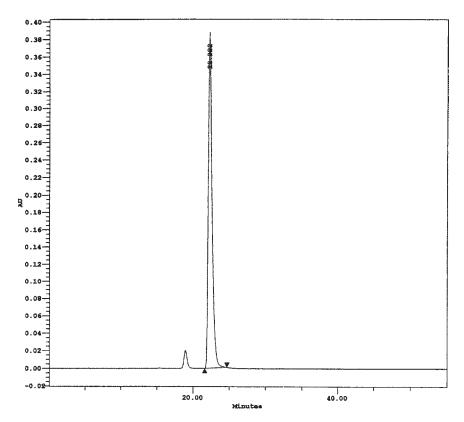


Fig. 2. HPLC profile of the reaction mixture containing 1:0 MB: H_2O_2 (control experiment). The elution of methylene blue ($T_r = 22.322$ min) confirmed no occurrence of enzymatic oxidation in the absence of H_2O_2 .

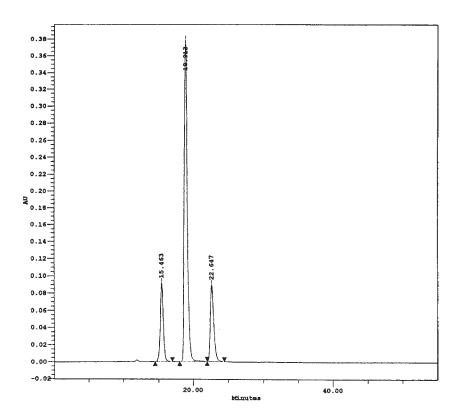


Fig. 3.

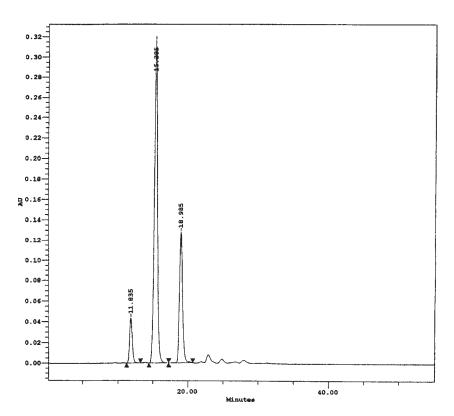


Fig. 4.

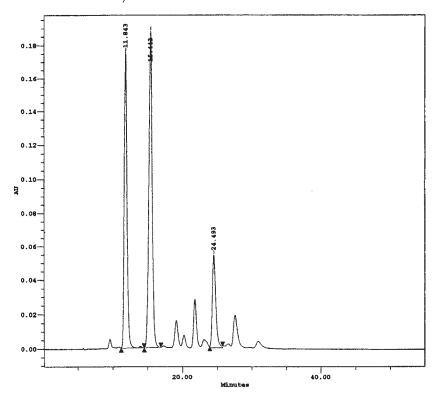


Fig. 5. HPLC elution profile of the products that were formed in reaction mixtures containing 1:3 MB: $\mathrm{H_2O_2}$. The two major peaks correspond to the *N*-demethylated derivations azure A ($T_r = 15.443 \, \mathrm{min}$) and azure C ($T_r = 11.843 \, \mathrm{min}$).

ment and that of the reactions products. The use of 1:1 MB: H_2O_2 and 1:2 H_2O_2 resulted in the formation of azure B and azure A, respectively, with yields of about 70% (Figs. 3 and 4). The use of an MB: H_2O_2 relation higher than 1:2 resulted in the formation of several products (Fig. 5), in agreement with the spectrum shown in Fig. 1 for this reaction condition, in which no clear λ_{max} can be identified.

Figures 6–8 present HPLC profiles corresponding to the products of azure B oxidations. According to the results presented in Fig. 6, the absence of $\rm H_2O_2$ prevented the dye oxidation, as expected. The use of 1:1 AB:H $_2O_2$ allowed the formation of 70% AA (Fig. 7) and of 1:2 AB:H $_2O_2$ resulted in an

Fig. 3. (*previous page*) HPLC elution profile of the products formed in reaction mixtures containing 1:1 MB: H_2O_2 . The major product formed, with a yield of 70%, was identified as azure B ($T_r = 18.913$ min). The profile also shows the formation of azure A ($T_r = 15.463$ min) and the presence of residual amounts of methylene blue ($T_r = 22.647$ min).

Fig. 4. (*previous page*) HPLC elution profile of the products formed in reaction mixtures containing 1:2 MB: H_2O_2 . The major product, formed with a yield of 70%, was identified as azure A ($T_r = 15.385$ min). The profile also shows the formation of azure C ($T_r = 11.835$ min) and the presence of residual amounts of azure B ($T_r = 18.985$ min).

Fig. 6.

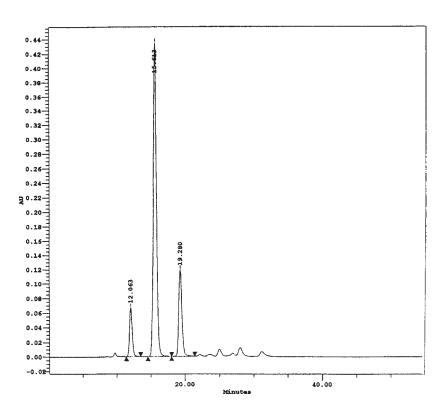


Fig. 7.

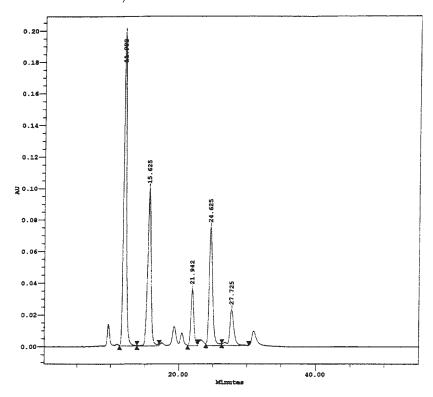


Fig. 8. HPLC elution profile of the products formed in reaction mixtures containing 1:2 AB:H₂O₂. Major peaks correspond to the azure A ($T_r = 15.625$ min) and azure C ($T_r = 11.992$ min). Methylene blue ($T_r = 21.942$ min) is also present.

HPLC profile similar to the one already observed for 1:3 MB:H₂O₂, i.e., the presence of several products (Fig. 8).

Our results indicated the use of the 1:1 MB: H_2O_2 relation resulted in the preferential removal of one methyl group and that of 1:2 resulted in the removal of two methyl groups from the methylene blue molecule. The use of 1:3 MB: H_2O_2 resulted in an absorbance profile without a defined $\lambda_{\rm max}$ and an intense decrease in the absorptivity that is justified by the formation of several products in low concentration, which included the presence of products with retention times according to the expected N-demethylated derivatives. The presence of more than six products suggests the occurrence of modifications on the aromatic rings besides the demethylation reactions. The selective formation of azure B and A and the unspecific

Fig. 6. (previous page) HPLC profile of the reaction mixture containing 1:0 AB: H_2O_2 (control experiment). The elution of azure B (T_r = 19.168 min) confirmed no occurrence of enzymatic oxidation in the absence of H_2O_2 .

Fig. 7. (previous page) HPLC elution profile of the products formed in reaction mixtures containing 1:1 AB: H_2O_2 . The major product formed, with a yield of 70%, was identified as azure A ($T_r = 15.463$ min). The profile also shows the formation of azure C ($T_r = 12.063$ min) and the presence of residual amounts of azure B ($T_r = 19.280$ min).

			2 2		
			Products (% area)		
Substrate	Substrate:H ₂ O ₂ ratio	MB	AB	AA	AC
MB	1:0.10	89.5	10.5	_	
	1:0.25	74.2	25.7	_	
	1:0.50	50.4	49.6	_	_
	1:0.75	29.6	63.9	6.8	_

Table 2 Azure B Yields in Reaction Mixtures Containing MB:H₂O₂ Ratios Lower Than 1:1^a

^aMB, Methylene blue; AB, azure B; AA, azure A; AC, azure C.

Table 3
MB and AB Decoloration Level Obtained in Reaction Mixtures Containing Dye:H₂O₂ (1:10)^a

Substrate:H ₂ O ₂ ratio	Substrate consumption (%)	$\Sigma ABS_{initial} - \Sigma ABS_{final}$ (%)
1:10 MB	98.0	85.2
1:10 AB	98.4	90.6

^aThe decrease in MB and AB absorbance at 600 nm was calculated considering the initial HPLC absorbance of MB or AB and the total HPLC absorbance values of the oxidation products. ABS, absorbance.

substrate oxidation when MB: H_2O_2 is higher than 1:2 and AB: H_2O_2 is higher than 1:1 confirms the enzyme preference toward the N(CH $_3$) $_2$ group oxidation. The results of TLC (data not shown) were in agreement with HPLC analysis in which a major spot appeared on the use of 1:1 and 1:2 MB: H_2O_2 and 1:1 AB: H_2O_2 and a set of spots with low color intensity for MB: H_2O_2 higher than 1:2 and AB: H_2O_2 higher than 1:1.

Table 2 summarizes the pattern of product formation for MB:H₂O₂ ratios lower than 1:1. A close relationship between the H₂O₂ concentration and the amount of formation of dye derivative was obtained, suggesting a 1:1 stoichiometric relation for the enzymatic oxidative reactions. The definition of the dye:H₂O₂ relation is valuable, not only because it allows a better understanding of the role of the H₂O₂ in the LiP activation step, but also because of its practical importance for enzymatic dye decoloration. Moreover, it allows the use of the minimum necessary H₂O₂ concentration, thereby, avoiding enzyme inactivation by an excessive H₂O₂ concentration (20). According to the data presented in Table 3, the use of 1:10 MB:H₂O₂ and 1:10 AB:H₂O₂ resulted in an 85% decrease in absorbance, 85.2% and 90.6%, respectively. The data confirm the possibility of LiP application as an ecofunctional enzyme. Considering potential biotechnological applications, besides environmental biocatalysis, LiP could be used as a catalyst for selective organic synthesis of dyes with high yields, because it is reported that the chemical process for azure B production results in a maximal yield of 35% (14).

Acknowledgments

We are grateful to Dr. Maria Eleonora A. de Carvalho, the Departamento de Biotecnologia da Faculdade de Engenharia Química de Lorena, São Paulo, Brazil, for providing the crude preparation of LiP. This work was financed by the Brazilian Research Council (CNPq).

References

- 1. Vyas, B. R. M., Bakawoski, S., Sasek, V., and Matucha, M. (1994), FEMS Microbiol. Ecol. 14, 65–70.
- 2. Torres, E., Tinoco, R., and Vazquez-Duhalt, R. (1997), Water Sci. Technol. 36(10), 37–44.
- 3. Khindaria, A., Grover, T. A., and Aust, S. D. (1995), Environ. I Sci. Technol. 29, 719–725.
- Schmidt, H. W. H., Haemmerli, S. D., Schoemaker, H. E., and Leisola, M. S. A. (1989), Biochemistry 28, 1776–1783.
- 5. Joshi, K. and Gold, H. (1994), Eur. J. Biochem. 237, 45-47.
- Cripps, C., Bumpus, J. A., and Aust, S. A. (1990), Appl. Environ. Microbiol. 56, 1114– 1118.
- 7. Ollika, P., Alhonmaki, K., Leppanen, V., Glumoff, T., Raijola, T., and Suominen, I. (1993), *Appl. Environ. Microbiol.* **59**, 4010–4016.
- 8. Chao, W. L. and Lee, S. L. (1994), World J. Microbiol. Biotechnol. 10, 556–559.
- 9. Magalhães, D. B. (1997), PhD thesis, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- 10. Bumpus, J. A. (1989), Appl. Environ. Microbiol. 55, 54-158.
- 11. Kling, S. H. and Araújo Neto, J. S. (1991), J. Biotechnol. 21, 295–300.
- 12. Magalhães, D. B., Carvalho, M. E. A., Bon, E., and Kling, S. H. (1996), *Biotechnol. Technol.* **10(4)**, 273–276.
- Chivukula, M., Spadaro, J. T., and Renganathan, V. (1995), Biochemistry 34, 7765–7772.
- 14. Odier, E. and Artaud, I. (1992), in *Microbial Degradation of Natural Products*, Winkelman, G., ed., VCH, Weinheim, Germany, pp. 161–185.
- 15. Green, F. G. (1991), *The Sigma-Aldrich Handbook of Stains, Dyes and Indicators*. Chemical Company, Milwaukee.
- De Carvalho, M. E. A., Monteiro, M. C., Bon, E. P. S., and Sant'anna, G. L., Jr. (1998), Appl. Biochem. Biotechnol. 70–72, 955–966.
- 17. Tien, M. and Kirk, T. K. (1984), Proc. Natl. Acad. Sci. USA 8, 2280-2284.
- 18. Abidi, S. L. (1983), J. Chromatog. 255, 101–114.
- 19. McKamey, M. R. and Spitznagle, L. A. (1975), J. Pharm. Sci. 64, 1456–1461.
- 20. Aitken, M. D. and Irvine, R. L. (1989), Biotechnol. Bioeng. 34, 1251–1260.